General Description

The HM9708A is an ultra－efficiency，1．5A rated，slew rate control Load Switch．It supports the lowest quiescent current $\left(\mathrm{I}_{\mathrm{Q}}\right)$ and shutdown current（ $\mathrm{I}_{\text {SD }}$ ）in the industry．Low I_{Q} and ISD solutions help designers to reduce leakage current，improve system efficiency，and increase battery lifetime．

The HM9708A integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events．The slew rate control limits the inrush current for designs with heavy capacitive loads and thereby minimizing any resulting voltage droop at the power rails．

The HM9708A Load Switch device supports a wide input voltage range（ 1.1 V to 5.5 V ） and helps to improve operating life and system robustness．Furthermore，the device supports flexible applications and can be used in multiple voltage rail applications，which helps to reduce costs．

The HM9708A Load Switch device is packaged in a SOT23－5，DFN2X2－6L package．

Features

－Low $\mathrm{R}_{\mathrm{ON}}=85 \mathrm{~m} \Omega$ TYP．＠ $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Wide Input Range： 1.1 V to 5.5 V
－Iout Max $=1.5 \mathrm{~A}$
■ Ultra－Low IQ： 6 nA Typ．＠ $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ Controlled Rise Time： 430 us＠ $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Internal EN Pull－Down Resistor
－Integrated Output Discharge Switch
－SOT23－5，DFN2X2－6L
－RoHS and Green Compliant

Applications

－IoT
－Wearable electronics
－SSD
－Mobile Phones
－Low Power Subsystems

Typical Application Diagram

Fig. 1 Typical application diagram

Pin Configuration

Fig. 2 Pin configuration

Pin Description

Pin	Name	Description
1	VOUT	Switch Output
2	GND	Ground
3	NC	No Connection
4	EN	Enable to control the switch
5	VIN	Switch Input. Supply Voltage for IC

Product Name List

Part Number		Output Discharge	$\begin{gathered} \text { EN } \\ \text { Activity } \end{gathered}$	Internal EN Resistor	Availability
＋ 0 ¢	$85 \mathrm{~m} \Omega$	85Ω	High	Pull－Down	Released

Type Number

Type Number	Package	Number of package	Description
HM9708A		3000 PCS	＋ 0 ¢

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Description	Value	Units
$\mathrm{V}_{\text {IN }}$, Vout, $\mathrm{V}_{\text {en }}$	Each Pin Voltage Range to GND	-0.3 to 6	V
$\mathrm{I}_{\text {out }}$	Maximum Continuous Switch Current	1.5	A
P_{D}	Maximum Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	W
ESD	Human Body Model, EIA/JESD22-al 14	± 8	kV
	Charged Device Model, JS-002-2014	± 2	
	Machine Model, EIA/JESD22-al15	± 300	V
T_{A}	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\theta_{J A}$	Thermal Resistance, Junction to Ambient (SOT23-5)	220	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Values are at $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Basic Operation						
$\mathrm{V}_{\text {IN }}$	Supply Voltage		1.1		5.5	V
IQ	Quiescent Current ${ }^{* 1}$	Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=4.5 \mathrm{~V}$		6		nA
		Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{EN}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		9		
ISD	Shutdown Current	Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		2		nA
		Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$		3		
		Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		7		
		Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		20		
		$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$		83		
		Iout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		440		
$\mathrm{R}_{\text {ON }}$	On-Resistance	Iout $=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=1.1 \mathrm{~V}$		215		$\mathrm{m} \Omega$
		$\mathrm{I}_{\text {out }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=1.2 \mathrm{~V}$		176		
		$\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=1.8 \mathrm{~V}$		117		
		Iout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3.3 \mathrm{~V}$		91	105	
		Iout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		110		
		Iout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=4.5 \mathrm{~V}$		85	99	
		Iout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		99		
$\mathrm{R}_{\text {DSC }}$	Output Discharge Resistance	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{I}_{\text {force }}=10 \mathrm{~mA}$	70	85	100	Ω
$\mathrm{V}_{\text {IH }}$	EN Input Logic High Voltage	$\mathrm{V}_{\text {IN }}=1.1 \mathrm{~V}-1.8 \mathrm{~V}$	0.9			V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}-5.5 \mathrm{~V}$	1.2			V
$\mathrm{V}_{\text {IL }}$	EN Input Logic Low Voltage	$\mathrm{V}_{\text {IN }}=1.1 \mathrm{~V}-1.8 \mathrm{~V}$			0.3	V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}-5.5 \mathrm{~V}$			0.4	V
R_{EN}	EN pull resistance	Internal Pull-Down Resistance	7	10	13	$\mathrm{M} \Omega$
I_{EN}	EN Current	$\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}$		0.56	0.8	$\mu \mathrm{A}$

*1: I_{Q} of HM9708A does not include the EN pin current through the pull-down resistor R_{EN};

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Values are at $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Switching Characteristics						
$\mathrm{t}_{\text {don }}$	Turn-On Delay*2	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{Cout}=0.1 \mu \mathrm{~F}$		270		$\mu \mathrm{s}$
$t_{\text {R }}$	Vout Rise Time ${ }^{* 2}$			430		
$\mathrm{t}_{\text {don }}$	Turn-On Delay* ${ }^{*}$	$\mathrm{R}_{\mathrm{L}}=510 \Omega$, Cout $=0.1 \mu \mathrm{~F}$		250		
t_{R}	Vout Rise Time ${ }^{* 2}$			405		
$\mathrm{t}_{\text {dofF }}$	Turn-Off Delay ${ }^{* 3}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{Cout}=0.1 \mu \mathrm{~F}$		0.42		
t_{F}	Vout Fall Time*3			1.8		
$\mathrm{t}_{\text {dofF }}$	Turn-Off Delay ${ }^{* 3}$	$\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{Cout}^{\text {a }}=0.1 \mu \mathrm{~F}$		1.1		
t_{F}	Vout Fall Time*3			17		

*2: $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{dON}}+\mathrm{t}_{\mathrm{R}}$;
$* 3: t_{\text {OFF }}=t_{\text {dOFF }}+t_{\text {F }}$;

Block Diagram

Fig． 3 Block Diagram

Timing Diagram

Fig． 4 Timing Diagram

Typical Performance Characteristics

Fig． 5 Ron vs．VIN

Fig． 7 IQ vs．VIN（HM9708A）

Fig． 9 Isd vs．VIN（HM9708A）

Fig． 6 Ron vs．Temperature

Fig． $8 \quad I_{Q}$ vs．Temperature（HM9708A）

Fig． 10 Isd vs．Temperature（HM9708A）

Fig． 11 t $_{\text {dON }}$ vs．Temperature（HM9708A）

Fig． 13 R $_{\text {dSC }}$ vs．Temperature（HM9708A）

Fig． 15 Turn－On Response（HM9708A） $V_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$

Fig． $12 t_{R}$ vs．Temperature（HM9708A）

Fig． 14 I $_{\text {EN }}$ vs．Temperature（HM9708A）

Fig． 16 Turn－On Response（HM9708A） $V_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=510 \Omega$

Fig． 17 Turn－Off Response（HM9708A） $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{CoUT}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$

Fig． 18 Turn－Off Response（HM9708A）
$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{Cout}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=510 \Omega$

Functional Description

1．Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush currents，an input bypass capacitor is recommended，which is recommended to be placed close to the VIN pin．Higher value capacitors can further help to reduce the voltage drop

2．Output Capacitor

Depending on the sink current during system start－up and system turn－off，a capacitor must be placed on the output．A $1.0 \mu \mathrm{~F}$ or larger capacitor across OUT and GND pins is recommended to accommodate load transient condition．This capacitor can also help to prevent parasitic inductance which can force the output voltage to fall below GND during turn－off．Undershoot can be caused by parasitic inductance from board traces or intentional load inductances．If load inductances do exist，use of an output capacitor can improve output voltage stability and system reliability．The COUT capacitor should be placed close to the VOUT and GND pins．

3．EN pin

The EN pin is compatible with active HIGH GPIO and CMOS logic voltage levels and operates over the 1.1 V to 5.5 V operating voltage range．Note that The HM9708A incorporates an internal pull－down resistor on the enable pin，to ensure that the device remains OFF，in the event that the pin is left floating．

4．Output Discharge Function

The HM9708A has an internal discharge N－channel FET switch on the VOUT pin．When EN signal turns the main power FET to an off state，the N －channel switch turns on to discharge an output capacitor quickly．

5．Board Layout

For the best performance，all traces should be as short as possible to minimize the inductance and parasitic effects．The input and output capacitors should be kept as close as possible to the input and output pins respectively．Using wide traces for input，output，and GND help reducing the case to ambient thermal impedance．

Package Information

SOT23－5 Package Outline Diagram

SECTION B－B

封装说明：$\square \boldsymbol{C E T y T E} \boldsymbol{C}$

TOP VIET

BOTTON VIEW

SIDE VIEW

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min．	Max．	Min．	Max．
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.203 REF．		0.008 REF.$$	
D	1.924	2.076	0.076	0.082
E	1.924	2.076	0.076	0.082
D1	0.800	1.000	0.031	0.039
E1	0.850	1.050	0.033	0.041
D2	0.200	0.400	0.008	0.016
E2	0.460	0.660	0.018	0.026
k	0.200 MIN.$$		0.008 MIN.$$	
b	0.250	0.350	0.010	0.014
e	0.650 TYP．		0.026 TYP．	
L	0.174	0.326	0.007	0.013

Notes

1．All dimensions are in millimeters
2．Tolerance $\pm 0.10 \mathrm{~mm}$（ 4 mil ）unless otherwise specified
3．Package body sizes exclude mold flash and gate burrs．Mold flash at the non－lead sides should be less than 5 mils．
4．Dimension L is measured in gauge plane
5．Controlling dimension is millimeter，converted inch dimensions are not necessarily exact．

